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Summary: Substrate specificity of the human dipeptidyl-peptidase III has been modeled using 
Random Forests on representations of amino acids by three general physicochemical properties. 
Site P1 has a strong impact on peptide binding affinity, but does not affect cleavage. A 
hydrophobic amino acid at site P1’ is favorable for both processes. 
 



Human dipeptidyl-peptidase III (DPP III) belongs to the metallopeptidase M49 family and 
cleaves N-terminal dipeptides with broad specificity. This cytosolic enzyme of eukaryotes1 may 
be medically significant as DPP III activity correlates with aggressiveness of ovary carcinomas2, 
has a role in pain modulation3 and in the endogenous defense against oxidative stress4. 
Properties of human DPP III, such as substrate affinity5, or reactivity of cysteines important for 
activity6, differ considerably from rat DPP III, despite very high sequence similarity (~93% 
identity). 
 
We have attempted to computationally model the properties of peptides that make them good 
substrates for (A) cleavage or (B) binding by human DPP III. The ‘cleavage’ dataset consisted 
of 53 peptides of length 3-7 with cleavage roughly quantified by spot detection after thin-layer 
chromatography7 and encoded as ‘positive’ and ‘negative’ classes of approximately equal sizes.  
 
The ‘binding’ dataset consisted of 39 peptides of length 3-7, whose binding affinity, expressed 
by inhibitory constant (Ki), was determined by treating peptides as alternate substrate 
inhibitors8. Only peptides with very high binding affinities may be relevant as substrates or 
inhibitors in vivo; therefore, we have separated the top 30% (n = 12) binders (Ki < 3.5 µM) into 
a ‘positive class’ and the others into a ‘negative’ class. 
 
Each peptide was described by three different amino acid physicochemical properties for the 
each of the peptide’s first three amino acids (P2, P1 and P1’), totaling 9 attributes per peptide. 
The physicochemical properties were derived by reducing the dimensionality of the Amino Acid 
Index database 9 using principal components analysis (PCA). The first three principal 
components (PCs) retained 33%, 15% and 12% of information in the database, and were 
correlated to hydrophobicity (PC-1), and anticorrelated to: α-helix propensity (PC-2) and 
abundance in mesophile proteins (PC-3).  
 
A representation of amino acids using only their very general properties, in contrast to noting 
presence of an exact amino acid at an exact position, may be advantageous with enzymes of 
broad specificity, and when only a dataset of very limited size is available (danger of 
overfitting).  
 
The Random Forest (RF) classifier10 is essentially an ensemble of decision trees built on subsets 
of the data. RF offers predictive performance in line with the Support Vector Machines11 while 
being less sensitive to choice of training parameters, and easily parallelized for speed12. Some 
implementations allow insight into functioning of models via evaluation of attribute importance 
and computation of ‘class prototypes’, where the algorithm separates classes into subgroups by 
how frequently instances share branches in the individual decision trees. 
 
The predictive ability of models for cleavage by, and binding affinity to, DPP III of peptides 
was moderate – crossvalidation accuracy was 71.7%, and 82.1%, respectively. Amino acid 2 
(P1) was not important for determining whether a peptide will be cleaved, however it is highly 
relevant for determining binding affinity to DPP-III. Amino acid 3 (P1’), especially its 
hydrophobicity, is important in both cases: highly hydrophobic amino acids (e.g. isoleucine) are 
likely to improve both cleavage and binding. In modeling binding affinity the fourth amino acid 
may also be relevant (data not shown).  



Table 1. The relative importance (“import”) of nine attributes – three physicochemical 
properties per amino acid in the peptide – for (a) cleavage or (b) binding affinity to DPP III is 
denoted by diamonds (�). Each diamond is worth ten in Z-score of attribute importance, as 
reported by RF. Prototypes in each classification task are described by: class (“pos” or “neg”), 
number of instances “n” in the prototype, and median values of each attribute within the 
prototype. Representative peptides are approximations derived from attribute medians in 
prototypes. 
 

  cleavage dataset ( n=53 ) affinity dataset ( n=39 ) 
prototypes prototypes amino 

acid 
PC import 

neg 

n=20 

neg 

n=5 

pos 

n=20 

pos 

n=6 

import 
pos 

n=10 

neg 

n=18 

neg 

n=6 

hydro � -0.55 0.49 0.49 0.49 ��� 1.31 0.49 0.49 
helix n.s.     � -0.02 -0.23 0.37 

1 
(P2) 

rarity ��� 0.01 -0.19 0.01 1.53 ��� -0.98 0.01 1.53 
hydro n.s.     ����� 1.21 -0.55 -1.26 
helix n.s.     ���� 0.37 0.67 2.07 

2 
(P1) 

rarity n.s.     ����� 1.53 -0.19 0.43 
hydro ����� 0.11 -1.26 1.23 -1.26 ���� 1.21 1.21 -0.55 
helix ��� 0.23 2.07 0.23 2.07 �� 0.37 0.23 2.07 

3 
(P1’) 

rarity ��� -0.19 -0.95 0.43 -0.95 �� 0.01 0.43 -0.95 

representative peptide 
for the prototype   
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